Tuesday, April 24, 2007

SVM v2 result

F_.v1.v2.Test

t c=32.0, g=0.125 CV rate=94.8725
Training...
Output model: F_v1.v2.Train.model
Scaling testing data...
Testing...
Accuracy = 46.9498% (1647/3508) (classification)
Output prediction: F_v1.v2.Test.predict


answer
H, A, S, F, P |Predict
48 69 103 27 264 |0
9 7 2 63 78 |1
0 24 46 3 7 |2
6 7 15 46 77 |3
287 187 184 449 1500 |4

=============
F0_.v1.v2.Test

t c=32.0, g=0.125 CV rate=94.7875
Training...
Output model: F0_v1.v2.Train.model
Scaling testing data...
Testing...
Accuracy = 52.1095% (1828/3508) (classification)
Output prediction: F0_v1.v2.Test.predict


answer
H, A, S, F, P |Predict
47 44 50 1 159 |0
8 2 0 46 56 |1
0 23 72 24 12 |2
1 5 12 26 18 |3
294 220 216 491 1681 |4

J48 v1 result

F_v1.csv(10 CV)
=== Run information ===

Scheme: weka.classifiers.trees.J48 -C 0.25 -M 2
Relation: F_v1
Instances: 6274
Attributes: 103
[list of attributes omitted]
Test mode: 10-fold cross-validation

=== Classifier model (full training set) ===

=== Summary ===

Correctly Classified Instances 5823 92.8116 %
Incorrectly Classified Instances 451 7.1884 %
Kappa statistic 0.8832
K&B Relative Info Score 552448.6144 %
K&B Information Score 9940.3112 bits 1.5844 bits/instance
Class complexity | order 0 11285.6028 bits 1.7988 bits/instance
Class complexity | scheme 327256.4897 bits 52.1607 bits/instance
Complexity improvement (Sf) -315970.8869 bits -50.362 bits/instance
Mean absolute error 0.0316
Root mean squared error 0.1657
Relative absolute error 12.8354 %
Root relative squared error 47.2221 %
Total Number of Instances 6274

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure Class
0.923 0.006 0.942 0.923 0.933 _S
0.845 0.012 0.851 0.845 0.848 _A
0.941 0.013 0.925 0.941 0.933 _F
0.861 0.017 0.856 0.861 0.858 _H
0.948 0.07 0.949 0.948 0.949 _P

=== Confusion Matrix ===

a b c d e <-- classified as
553 4 14 1 27 | a = _S
8 382 7 8 47 | b = _A
1 15 859 5 33 | c = _F
1 6 8 570 77 | d = _H
24 42 41 82 3459 | e = _P

Number of Leaves : 278

Size of the tree : 555



================
F0_v1.csv (10 CV)

=== Run information ===

Scheme: weka.classifiers.trees.J48 -C 0.25 -M 2
Relation: F0_v1
Instances: 6274
Attributes: 103
[list of attributes omitted]
Test mode: 10-fold cross-validation

=== Classifier model (full training set) ===

Number of Leaves : 262

Size of the tree : 523


Time taken to build model: 34.48 seconds

=== Stratified cross-validation ===
=== Summary ===

Correctly Classified Instances 5742 91.5206 %
Incorrectly Classified Instances 532 8.4794 %
Kappa statistic 0.8615
Mean absolute error 0.0364
Root mean squared error 0.1782
Relative absolute error 14.7968 %
Root relative squared error 50.7918 %
Total Number of Instances 6274

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure Class
0.93 0.008 0.922 0.93 0.926 _S
0.812 0.012 0.838 0.812 0.825 _A
0.92 0.015 0.911 0.92 0.916 _F
0.802 0.016 0.854 0.802 0.827 _H
0.945 0.092 0.935 0.945 0.94 _P

=== Confusion Matrix ===

a b c d e <-- classified as
557 7 10 1 24 | a = _S
9 367 16 8 52 | b = _A
5 12 840 5 51 | c = _F
1 8 8 531 114 | d = _H
32 44 48 77 3447 | e = _P

SVM v1 result

F_v1.test.5

Best c=128.0, g=0.5 CV rate=93.2173
Training...
Output model: F_v1.train.5.model
Scaling testing data...
Testing...
Accuracy = 94.8791% (1334/1406) (classification)
Output prediction: F_v1.test.5.predict


answer
H, A, S, F, P |Predict
129 0 0 1 13 |0
0 88 1 0 2 |1
1 0 124 0 2 |2
0 1 2 188 3 |3
20 11 3 12 805 |4


=========
F0_v1.test.5

Best c=32.0, g=0.5 CV rate=93.0753
Training...
Output model: F0_v1.train.5.model
Scaling testing data...
Testing...
Accuracy = 94.8791% (1334/1406) (classification)
Output prediction: F0_v1.test.5.predict


answer
H, A, S, F, P |Predict
129 0 0 1 12 |0
0 86 1 0 3 |1
1 0 124 0 2 |2
0 0 2 189 2 |3
20 14 3 11 806 |4

Wednesday, April 11, 2007

BVP analysis


analysis of BVP
To see more clips or start creating your own, visit clipmarks.com
Sent with Clipmarks

Tuesday, April 10, 2007

FFT

Fs是指sample rate
y是要被做FFT的data, 長度為L
NFFT = 2^nextpow2(L); % Next power of 2 from length of y
Y是做完FFT的結果
f是在frequence domain時的橫軸座標, 因此橫軸座標是的間隔是1/NFFT*2*Fs/2= 1*Fs/NFFT

clipped from www.mathworks.com
Y = fft(y,NFFT)/L;
f = Fs/2*linspace(0,1,NFFT/2);

powered by clipmarksblog it
http://civil.njtc.edu.tw/weng/excel/lectureNote/2.8.htm
補上一筆
只有一半可以用

clipped from civil.njtc.edu.tw

假如原來在時間域的資料點有N點,則經過FFT轉換後,在頻率域其數據仍為N點,但己經是複數了。這N點中第一個點為所有其他點的總合,而且前半數的N/2點與後半數的N/2點是共軛對稱的複數,對稱點在中點,例如有256點,則128點為其共軛對稱點。因此在時間域有N點,則以FFT轉換到頻率頻後只有N/2點可用。至於各點頻率差,若在時間域的數據每點間隔則在頻率域的頻率間隔為,例如前述的A900地震儀,其=0.005,取N=1024點做FFT轉換後可用點只有其半數512點,各點頻率間隔為=0.1953125cps.

 powered by clipmarksblog it

Power Spectrum Density

x: data
window: 在data中考量的window的大小
noverlap: window和window之間overlap的sample個數
nfft: 做fft時window的大小
clipped from www.mathworks.com

[Pxx,w] = pwelch(x,window,noverlap) divides x into segments according to window, and uses
the integer noverlap to specify the number of signal samples
(elements of x) that are common to two adjacent segments. noverlap must
be less than the length of the window you specify. If you specify noverlap as
the empty vector [], then pwelch determines
the segments of x so that there is 50% overlap (default).

[Pxx,w] = pwelch(x,window,noverlap,nfft) uses
Welch's method to estimate the PSD while specifying the length of the FFT
with the integer nfft. If you set nfft to
the empty vector [], it adopts the default value for N listed
in the previous syntax.

 powered by clipmarksblog it

Monday, April 09, 2007

一直忘了補上average

再取average的時候
到底怎樣取才好勒....
我現在有兩種取法,
一種是在整個induction的過程中都拿來average.
一種是將切出來的各種檔案拿來average

好像第二種比較make sense. ! so?

smooth?! normalized?!

smooth and normalized是最近在想的問題.
該怎麼寫比較準確, 該怎麼弄比較好
都是要考慮的....

smooth現在寫了兩個方法, gaussian smooth filter(用guassian window去做convorution)
另一個是標準的law pass filter(span=5).
其他其實還有很多的方法, 但感覺不出好壞與優劣還有特點
感覺上我應該要依據訊號的特徵去處理
現在是傾向寫起來放著 XD

除此之外, normalized其實就是shift and scale.
再放入feature的時候真的有這個必要嗎?!
真是不知道哪個好....
一樣先寫起來放著吧.... XD

快寫完了, 我要快點train